ทั้งโลกตกตะลึงเมื่อวันที่ GPT-3 ได้ทำการเปิดตัวสู่สาธารณะ หลายคนต่างก็มองว่านี้เป็นหนึ่งในนวัตกรรมที่จะช่วยแบ่งเบาภาระมนุษยชาติในการทำงานได้ แต่บ้างก็เสียงแตกกล่าวว่านี้คือภัยคุกคามต่อมนุษยชาติ ปัญญาประดิษฐ์ตัวนี้จะแย่งงานจนมนุษย์จะไม่เหลืออะไรให้ทำอีกต่อไป ในบทความนี้ เราจะมาสำรวจว่า GPT-3 คืออะไร มันทำงานอย่างไร และมันจะมาแย่งงานเราจริง ๆ หรือไม่ในอนาคต

GPT-3 คืออะไร

3rd generation Generative Pre-trained Transformer หรือ GPT-3 เป็น ระบบโครงข่ายประสาทเทียม (neural network) ขนาดยักษ์ที่เกี่ยวข้องกับการประมวลผลภาษาที่ถูกพัฒนาขึ้นโดย OpenAI จำนวนพารามิเตอร์ที่อยู่ในโมเดลของมันมีสูงถึง 1.75 แสนล้านตัว ถือเป็นโมเดลภาษาที่ใหญ่ที่สุดในโลก ณ ปัจจุบัน โดยจุดเด่นของมันคือการเข้าใจประโยคที่ได้รับมาราวกับว่าเป็นมนุษย์คนหนึ่ง (แสดงให้เห็นได้จากคำตอบของมันเอง) ซึ่งนักพัฒนา(อิสระ)ได้ลองใช้งานเจ้าโมเดลภาษาตัวนี้ผ่านการทดลองหลาย ๆ อย่าง ไม่ว่าจะเป็นการตอบคำถามความรู้รอบตัวในสาขาต่าง ๆ การเขียนบทกลอนภาษาอังกฤษด้วยสไตล์การประพันธ์อย่างนักเขียนบทละครชื่อดังอย่าง Shakespeare หรือการวาดภาพจากข้อความที่ใส่ไว้ สิ่งเหล่านี้แสดงให้เห็นว่า GPT-3 มีความเข้าใจภาษาเข้าใกล้กับภาษาที่มนุษย์เข้าใจมากขึ้น

OpenAI
รูปที่ 1 OpenAI บริษัทที่อยู่เบื้องหลังการพัฒนาปัญญาประดิษฐ์ GPT-3

ในตอนแรกที่ OpenAI ได้เปิดให้นักพัฒนาอิสระได้เข้าไปใช้งานตัวโมเดลนี้ผ่าน API ที่ทางบริษัทจัดเตรียมไว้ให้โดยผู้ที่ประสงค์จะใช้งานต้องเข้ามาลงทะเบียนและมีคุณสมบัติตามที่กำหนด แต่ล่าสุด ทาง OpenAI มีความมั่นใจในตัว GPT-3 เพิ่มขึ้นจึงได้เปิดให้บริการเชื่อมต่อ API อย่างเปิดเผยให้กับคนทั่วไปได้สามารถได้เข้ามาใช้งานได้ โดยมีเงื่อนไขว่าจะไม่ใช้ GPT-3 ในทางที่ไม่เหมาะสม ยกตัวอย่างเช่น ความรุนแรง การสร้างความเกลียดชัง เนื้อหาผู้ใหญ่ เป็นต้น

GPT-3 ทำงานอย่างไร

GPT-3 เป็นโมเดลทางภาษาที่ทำหน้าที่คาดเดาคำถัดต่อมาจากข้อความที่กำหนดให้ โดยที่ข้อความที่ใส่เข้าไปสามารถเป็นได้หลากหลายรูปแบบ ไม่ว่าจะเป็นการต่อเติมบทความให้เต็มจากประโยคเริ่มต้นที่กำหนดให้ หรือจะเป็นคำถามที่โมเดลจะตอบกลับมาเป็นคำตอบของคำถามนั้น แม้กระทั่งคำสั่งในการแปลภาษาจากภาษาอังกฤษเป็นภาษาฝรั่งเศสพร้อมแนบคำว่า “cheese” ดังในรูปที่ 2 โมเดลก็จะตอบกลับมาเป็นความว่า “fromage” ซึ่งแปลว่าชีสในภาษาฝรั่งเศสนั่นเอง

บทความที่เกี่ยวข้องกับโมเดลทางภาษา

gpt-3 meta learning
รูปที่ 2 ตัวอย่างข้อความที่ใส่ไปเป็นคำสั่งในการแปลภาษา และตัวอย่างในการเทรน GPT-3 ในรูปแบบของการเทรนด้วยข้อมูลเทรนที่มีจำนวนจำกัด ไม่ว่าจะเป็นไม่มีข้อมูลตัวอย่างเลย (Zero-shot), มีข้อมูลตัวอย่างหนึ่งชุดข้อมูล (One-shot), หรือ ข้อมูลตัวอย่างมากกว่าหนึ่งชุด (Few-shot) อ้างอิงจากรายงานผลการศึกษาของ GPT-3

ในการสร้างโมเดล GPT-3 ทางทีมงาน OpenAI ผสมผสานระหว่างการเรียนรู้แบบ supervised learning และ unsupervised learning เข้าด้วยกัน โดยที่จะเริ่มต้นจากการเรียนรู้ของ unsupervised learning ผ่านข้อมูลในรูปแบบของข้อความในลงไปบน neural network ในการเทรนภาษาที่ได้รับความนิยมอย่าง Transformer ไปเป็นจำนวนมากก่อน หลังจากนั้นจึงได้ทำการเรียนรู้แบบ supervised learning ด้วยการใช้เทคนิคการเทรนที่ทางโมเดลจะได้รับโจทย์บางอย่าง เช่น แบ่งแยกสุนัขกับแมว โดยที่โมเดลจะได้รับชุดข้อมูลในการเทรนในจำนวนที่จำกัด ซึ่งเป็นได้ทั้ง ไม่มีชุดข้อมูลเลย (zero shot), มีชุดข้อมูลสุนัขและแมวอยู่หนึ่งชุด (one shot), หรือมีชุดข้อมูลดังกล่าวที่มากกว่าหนึ่ง (few shot) ก่อนที่จะทำการตรวจสอบผลและปรับจูนน้ำหนักของแต่ละพารามิเตอร์ในโมเดลต่อไป ในกรณีนี้ โมเดลจะทำการเทรนโดยการรับคำสั่งมา (เป็นข้อความทั้งหมด) แล้วก็ได้รับตัวอย่างคำตอบมาเป็นจำนวนหลากหลายไม่ว่าจะเป็น ไม่ได้รับตัวอย่างเลย (zero shot) ได้รับมาแค่หนึ่งตัวอย่าง (one shot) หรือได้รับมามากกว่าหนึ่ง (few shots) ดังในรูปที่ 2

สิ่งมหัศจรรย์ของ GPT-3 คือการตอบคำถามที่ไม่ยึดติดกับรูปแบบตายตัวอย่างการเทรน supervised learning ที่จะคาดหวังคำตอบจากโมเดลตรงตามแบบฟอร์ม เช่น การเทรนโมเดลเพื่อแยกแยะระหว่างรูปแมวกับสุนัขซึ่งโมเดลทำการตอบได้แค่เพียงว่ารูปที่ใส่เข้าไปเป็นรูปแมวหรือรูปสุนัขเท่านั้น นอกจากนี้ GPT-3 ยังสามารถทำการส่งข้อมูลออกมาได้หลากหลายมาก เช่น การต่อข้อความจากประโยคเรียงร้อยกันเป็นบทความ และอื่นๆ ดังที่จะเห็นได้จากหัวข้อต่อ ๆ ไป

GPT-3 ทำอะไรได้บ้าง

Chatbot
รูปที่ 3 Designed by stories / Freepik

GPT-3 โชว์ทักษะทางด้านภาษาอย่างไม่น่าเชื่อ ในบทความนี้ได้รวบรวมสิ่งที่ GPT-3 สามารถทำได้ ตัวอย่างได้แก่

  • สร้างงานศิลปะ ตัวอย่าง: เขียนคอร์ดกีตาร์ของเพลงที่แต่งขึ้นเอง Amanda Askell twitter
  • สร้างบัญชีดุลทางการเงินได้จากข้อความ Yash Dani twitter

จากที่เห็นในตัวอย่างดังกล่าว เราจะเห็นว่าความสามารถบางอย่างถือว่าน่าประทับใจเลยทีเดียว แต่บางอย่างก็น่ากลัวเนื่องจากมันอาจจะทำงานแทนมนุษย์ได้ในงานอย่างเช่น การเขียนเว็บไซต์ งานสัมภาษณ์ สร้างงบดุลทางการเงิน เป็นต้น

ข้อจำกัดของมัน

ถึงแม้ว่ามันจะทำงานหลากหลายได้อย่างไร้ที่ติ แต่ก็ยังมีข้อจำกัด ตัวอย่างเช่น

  • อคติ: GPT-3 อาจมีอคติบางอย่างเกี่ยวกับสังคมเนื่องจากว่าข้อมูลที่ใช้เทรนเป็นข้อมูลที่ได้มาจากอินเทอร์เน็ตมาอย่างไม่ได้กรอง เพราะฉะนั้นจึงอาจจะมีคำพูดที่ส่อถึงอคติต่อบางเชื้อชาติได้ ตัวอย่าง
  • พลังงาน: การเทรนข้อมูลของ GPT-3 ด้วยข้อมูลทั้งหมดใช้พลังงานในการประมวลผลเทียบเท่ากับการขับรถยนต์ไปดวงจันทร์แล้วกลับมา ที่มีค่าใกล้เคียงกับตัวเลข 190,000 kWh ซึ่งนั่นเป็นปริมาณพลังงานที่สูงมาก
  • จากรายงานผลการศึกษาของ GPT-3 พบว่าในหลาย ๆ การทดสอบทักษะภาษา GPT-3 ยังทำออกมาได้ดีไม่เท่าโมเดลภาษาแบบ supervised learning ที่ดีที่สุดในตอนนั้น (State-Of-The-Art: SOTA)
  • GPT-3 เป็นโมเดลการเทรนภาษาแบบทั่วไป ไม่ได้ถูกเทรนมาเพื่อทำงานใดงานหนึ่งโดยเฉพาะ เป็นไปได้ว่าหากเราต้องการใช้ทำงานจริง ๆ การเทรนมันด้วยการทำงานใดงานหนึ่งโดยเฉพาะเจาะจง (Goal-Oriented Training) จะก่อให้เกิดการประยุกต์ใช้ในการทำงานจริงได้

จากที่กล่าวมา เราก็จะเห็นว่า GPT-3 อาจยังไม่พร้อมที่จะออกมาใช้งานกับงานทั่ว ๆ ไปอย่างที่ทุกคนคิด มันยังต้องการการศึกษาค้นคว้าเพื่อทำให้โมเดลพร้อมสมบูรณ์และอาจจะต้องทำให้โมเดลมีขนาดเล็กลงด้วยเพื่อทำให้การใช้งานเข้าถึงได้ทั่วไปมากกว่านี้

ปัญญาประดิษฐ์กับภาพในอนาคต

จากในหัวข้อความสามารถของ GPT-3 ประกอบกับรายงานที่บอกว่าปัญญาประดิษฐ์จะทำให้การจ้างงานหายไปทั้งหมด 40-50% ภายในเวลา 15-20 ปี นั่นทำให้หลายคนตื่นกลัวว่าตนเองจะโดนปัญญาประดิษฐ์แย่งงานไป แต่ทว่าในอดีตที่ผ่าน ๆ มา ทุก ๆ การเปลี่ยนแปลงอุตสาหกรรมก่อให้เกิดอาชีพใหม่อยู่เสมอ ครั้งนี้ถึงแม้ว่าผลกระทบจะกินวงกว้างมากขึ้นกว่าเดิม และการถ่ายโอนทักษะจากโลกอุตสาหกรรมบริการไปสู่โลกอุตสาหกรรมดิจิทัลจะเกิดขึ้นได้ยากกว่า อย่างไรก็ตามในครั้งนี้ดูเหมือนว่านี่คือทางที่โลกเลือกเดินและเราจำเป็นต้องปรับตัวให้ได้

การมาของเทคโนโลยีนี้ส่งผลกระทบต่อหลากหลายอุตสาหกรรมมาก โดยเฉพาะอย่างยิ่งอุตสาหกรรมที่อาศัยการสื่อสารของมนุษย์ หนึ่งในอุตสาหกรรมที่จะได้รับผลกระทบมากที่สุดคืออุตสาหกรรมการศึกษาที่หนังสือ AI 2041 ได้คาดการณ์ว่าด้วยเทคโนโลยีนี้ การเรียนรู้แบบเฉพาะบุคคล (personalized education) จะเกิดขึ้นซึ่งมันเข้ามาตอบโจทย์ปัญหาของอุตสาหกรรมการเรียนรู้ในปัจจุบันที่โดดเด่นทางด้านการสอนนักเรียนจำนวนมาก แต่ไม่ยืดหยุ่นพอให้นักเรียนได้เรียนรู้ตามความเร็วในการเรียนรู้ของตนเอง รวมถึงการเรียนรู้ที่คำนึงถึงความสนใจของผู้เรียนเป็นหลัก การใช้งาน GPT-3 จะเปรียบเสมือนเป็น “ผู้ช่วยเหลือการเรียนรู้” ที่นำมาใช้ในการตอบคำถามให้กับผู้เรียนในส่วนที่ผู้เรียนสงสัย (เพราะตัวมันเองได้ผ่านความรู้ต่าง ๆ เป็นจำนวนมากอยู่แล้ว) รวมถึงปรับระดับความเร็วในการสอนให้เข้ากับความสนใจของผู้เรียนเอง และในอนาคตครูจะทำหน้าที่เป็นผู้ส่งเสริมการเรียนรู้ให้กับเด็ก ไม่ว่าจะเป็นการแนะนำเรื่องใหม่ที่ผู้เรียนอาจสนใจ หรือแม้กระทั่งเป็นผู้ปรับจูนพารามิเตอร์ให้กับผู้ช่วยเหลือการเรียนรู้ GPT-3 ให้เหมาะสมกับผู้เรียนโดยทั่วไปได้ นี่เป็นเพียงแค่หนึ่งในหลากหลายอาชีพที่จะได้รับผลระทบจากการมาของ GPT-3 เพราะฉะนั้น กลุ่มอาชีพที่จะต้องมีการติดต่อสื่อสารที่ซ้ำ ๆ เดิม ๆ อาจได้รับผลกระทบ

ปฏิเสธไม่ได้ว่า ประสิทธิภาพของ GPT-3 ในปัจจุบัน ทำให้เราตั้งคำถามถึงความอยู่รอดของมนุษยชาติในโลกที่ปัญญาประดิษฐ์มีความฉลาดเหนือกว่าเราในทุก ๆ ด้าน หรือสุดท้ายแล้ว GPT-3 จะเป็นจุดเริ่มของปัญญาประดิษฐ์แบบทั่วไป (Artificial General Intelligence: AGI) หรือไม่? AGI คือความพยายามที่จะสร้างปัญญาประดิษฐ์ที่มีความฉลาดและความคิดสร้างสรรค์เหมือนมนุษย์ที่ซึ่งถูกแบ่งแยกจากปัญญาประดิษฐ์แบบแคบ (Artificial Narrow Intelligence: ANI) ที่เป็นปัญญาประดิษฐ์ส่วนใหญ่ที่เรารู้จักในปัจจุบัน ถึงแม้ว่านักวิจัยหลายคนกล่าวว่าการพัฒนาปัญญาประดิษฐ์ปัจจุบันเป็นพื้นฐานในการต่อยอดไปสู่การสร้าง AGI ในอนาคต แต่ Professor Emeritus Ragnar Fjelland จาก University of Bergen ได้ตีพิมพ์งานวิจัยที่เห็นแย้งว่า ความก้าวหน้าทาง ANI ไม่ได้สร้างความก้าวหน้าให้กับ AGI และ AGI ไม่มีทางที่จะเกิดขึ้นได้นอกเสียจากมันจะเติบโต เป็นส่วนหนึ่งของสังคม และใช้ชีวิตอยู่บนโลกมนุษย์

“… AGI cannot be realized because computers are not in the world. As long as computers do not grow up, belong to a culture, and act in the world, they will never acquire human-like intelligence.”

“… AGI ไม่สามารถเกิดขึ้นได้เพราะคอมพิวเตอร์ (ที่สร้าง AGI ขึ้นมา) ไม่ได้อยู่บนโลกมนุษย์ ตราบใดที่คอมพิวเตอร์นั้นไม่ได้เติบโต เป็นส่วนหนึ่งของสังคม และใช้ชีวิตอยู่บนโลกมนุษย์ จะไม่มีวันที่มันมีความฉลาดเหมือนมนุษย์”

– Prof. Ragnar Fjelland ในผลงานวิจัย Why general artificial intelligence will not be realized

อย่างไรก็ตาม ในทรรศนะของผู้เขียน แก่นของโมเดลการเทรนภาษานี้คือการทำซ้ำในสิ่งที่ปรากฏบ่อย ๆ ในชุดข้อมูลที่นำมาเทรน เมื่อเปรียบเทียบกับมนุษย์ผู้ซึ่งมี “ความคิดสร้างสรรค์”แล้วนั้น ความคิดสร้างสรรค์ของโมเดลภาษาที่เป็นอยู่คงเป็นเพียงอะไรที่อยู่ภายในข้อมูลที่ใช้เทรนและไม่เหมือนความคิดสร้างสรรค์ที่มนุษย์เข้าใจและรู้จัก ถึงแม้ว่าการแทนที่แรงงานมนุษย์ด้วย GPT-3 หรือปัญญาตัวประดิษฐ์ตัวอื่นอาจจะสร้างผลกระทบในแง่ลบต่อระบบเศรษฐกิจปัจจุบัน แต่ในภาพกว้างแล้วการเข้ามาของโมเดลภาษาลักษณะนี้เป็นเรื่องที่ดีสำหรับเรา เพราะเราจะได้ใช้มันทำงานที่ไม่ได้ใช้ความคิดสร้างสรรค์เพื่อที่จะให้เราทำงานในส่วนที่ใช้ความคิดสร้างสรรค์ให้มาขึ้นกว่านี้ นั่นอาจรวมถึงการสร้างสรรค์รูปแบบของระบบเศรษฐกิจที่มีปัญญาประดิษฐ์เป็นตัวขับเคลื่อนในอนาคต

เขียนโดย อนันต์วัฒน์ ทิพย์ภาวัต
ตรวจทานและปรับปรุงเนื้อหาโดย นนทวิทย์ ชีวเรืองโรจน์

Data Scientist
Government Big Data institute (GBDi)

Recommended Posts