Taking too long? Close loading screen.

3 ตัวชี้วัดหลักของ E-commerce จะช่วยในการวิเคราะห์ข้อมูลของคุณได้อย่างไร

Nov 13, 2022
E-commerce และการวิเคราะห์ข้อมูล

ทุกคนคงรู้ดีว่า E-commerce เป็นวงการที่โหดเหี้ยมและจะยิ่งมีการแข่งขันสูงขึ้นเรื่อย ๆ จากเหตุการณ์โรคระบาดที่ทุกคนออกไปไหนไม่ได้ ทำให้ยอดขายผ่านทาง E-commerce เติบโตขึ้นอย่างรวดเร็วในเวลาเพียงสามเดือน ซึ่งเทียบได้กับการเติบโตเมื่อ 10 ปีที่ผ่านมา และก็ไม่มีแนวโน้มว่าอัตราการเติบโตจะลดลงเลย แต่นั่นก็ไม่ได้แปลว่ากลุ่มผู้ประกอบการรายย่อยนั้นจะขายสินค้าได้ง่ายขึ้น (E-commerce และการวิเคราะห์ข้อมูล)

ร้านค้าออนไลน์ประสบปัญหาเนื่องจากการแข่งขันที่สูงขึ้นและลูกค้าประจำลดฮวบลง ในขณะที่นักช้อปออนไลน์มักจะถูกจูงใจได้ง่าย ๆ ด้วยปัจจัยทางด้านราคาและระยะเวลาในการจัดส่ง  รวมไปถึงโจทย์ใหญ่ ๆ เช่น การสร้างประสบการณ์ที่ดีให้กับลูกค้าและการช่วยเหลือลูกค้า จึงไม่มีช่วงเวลาไหนเลยที่ผู้ประกอบการจะได้พักให้หายเหนื่อยได้เลย

ดังนั้นการวิเคราะห์ข้อมูลจึงมีบทบาทสำคัญต่อความสำเร็จในการทำ E-commerce ผู้ประกอบการจำเป็นต้องทราบว่าขณะนี้ร้านมียอดขายเพิ่มขึ้นหรือลดลง ลูกค้าเข้ามาหามากที่สุดในช่องทางไหน ลูกค้ากลุ่มไหนที่ใช้เงินมากที่สุดหรือเป็นลูกค้าประจำ ฯลฯ

แต่การวิเคราะห์ข้อมูลก็ไม่สามารถเกิดขึ้นได้ถ้าไม่มีข้อมูล ดังนั้นผู้ประกอบการจึงจำเป็นต้องติดตามผลและเก็บข้อมูลตัวชี้วัดของอีคอมเมิร์ซหรือ E-commerce Metrics ที่ถูกต้องเพื่อให้นักวิเคราะห์สามารถนำข้อมูลมาใช้ได้ ไม่เช่นนั้นคุณจะไม่รู้ว่าอะไรที่คุณทำถูกแล้ว (หรือทำไม่ถูก) และระบุได้ว่าจะต้องเปลี่ยนแปลงอะไรเพื่อเพิ่มรายได้และทำผลกำไรให้ดีขึ้น

แต่ละบริษัทอาจมีตัววัดที่ตอบโจทย์เป้าหมายธุรกิจที่แตกต่างกัน แต่ก็มีตัวชี้วัดบางตัวที่มักจะเป็นตัวชี้วัดหลักที่ใช้ได้กับเกือบทุกรูปแบบธุรกิจ ซึ่งตัวชี้วัดเหล่านี้จำเป็นอย่างยิ่งต่อความสำเร็จในการวิเคราะห์ข้อมูล และตัวชี้วัดต่อไปนี้ก็คือตัววัดประสิทธิภาพธุรกิจที่ธุรกิจ E-commerce ทุกรายควรติดตามผล เพื่อให้เราได้ข้อมูลที่สามารถนำไปใช้ต่อได้และเกิดความเข้าใจเชิงลึกในข้อมูล

1. มูลค่าคำสั่งซื้อโดยเฉลี่ย (Average Order Value)

มูลค่าคำสั่งซื้อโดยเฉลี่ย หรือ Average Order Value (AOV) หมายถึงจำนวนเงินเฉลี่ยของคำสั่งซื้อแต่ละยอดในเว็บไซต์หรือแอปมือถือของคุณ  มันเป็นวิธีที่ยอดเยี่ยมในการติดตามผลรายได้เนื่องจากมันหารรายได้ของคุณตามคำสั่งซื้อ จึงเป็นการโฟกัสที่รายได้ต่อธุรกรรมแทนที่จะเป็นจำนวนธุรกรรมที่เกิดขึ้นหรือจำนวนเงินที่คุณได้

เพราะยอดขายอาจทำให้ผู้ประกอบการเข้าใจผิดได้ เนื่องจากบางทียอดขายทำให้คุณรู้สึกว่าคุณขายได้เยอะ แต่ว่าแต่ละรายการนั้นได้จำนวนเงินที่ต่ำมาก AOV ช่วยให้คุณมองเห็นภาพชัดเจนของแนวโน้มรายได้ของคุณ

AOV ช่วยให้นักวิทยาศาสตร์ข้อมูลให้ข้อมูลประกอบการตัดสินใจที่สำคัญในบริษัทอีคอมเมิร์ซ เช่นจะเพิ่มหรือลดราคาหรือเปลี่ยนทิศทางการทำการตลาดไปดึงดูดกลุ่มลูกค้าที่มีกำลังจ่ายสูงขึ้น AOV ที่ต่ำอาจเป็นสัญญาณว่าคุณต้องเพิ่มมูลค่าต่อคำสั่งซื้อ ตัวอย่างเช่น กำหนดยอดซื้อขั้นต่ำที่จะได้การจัดส่งฟรี เพื่อกระตุ้นให้ผู้ซื้อเพิ่มรายการสินค้าสองสามอย่างลงตะกร้าหรือนำเสนอชุดสินค้าหลายอย่างรวมกันที่มีมูลค่าสูงกว่าเพื่อจะกระตุ้นให้ลูกค้าใช้เงินมากขึ้นอีกนิดในแต่ละคำสั่งซื้อ

นอกจากนี้ AOV ยังเป็นตัววัดที่สำคัญสำหรับการคำนวณต้นทุนและค่าใช้จ่าย  ตัวอย่างเช่น ถ้า AOV ของคุณสูงแต่ผลกำไรโดยรวมต่ำ นั่นอาจเป็นสัญญาณว่าบริษัทของคุณใช้เงินมากเกินไปในการหาลูกค้าแต่ละราย  มีเพียงข้อมูลเท่านั้นที่บอกคุณได้ ซึ่งสิ่งนี้จะนำไปสู่ตัวชี้วัดถัดไปของเรา

2. ต้นทุนในการหาลูกค้า (Customer Acquisition Cost)

ต้นทุนในการหาลูกค้า หรือ Customer Acquisition Cost (CAC) เป็นการวัดจำนวนเงินที่คุณใช้ในการดึงดูดลูกค้าใหม่แต่ละราย คุณสามารถคำนวณได้โดยการหารค่าการตลาดทั้งหมดด้วยจำนวนลูกค้าใหม่ในช่วงระยะเวลาหนึ่ง

CAC เป็นวิธีที่สำคัญในการติดตามผลความสำเร็จของการตลาดของคุณและเป็นตัวตัดสินใจว่าคุณจะใช้เงินไปกับการหาลูกค้าใหม่เท่าไร ถ้า CAC ของคุณสูงเกินไป อาจทำให้ทำกำไรได้ยาก โดยเฉพาะอย่างยิ่งถ้า AOV ของคุณต่ำด้วย

แต่สำคัญที่ผู้ประกอบการต้องจำไว้ว่าต้นทุนในการหาลูกค้าที่สูงไม่ใช่เป็นสัญญาณเตือนเสมอไป ถ้าลูกค้าของคุณมีกำลังจ่ายสูงและเป็นลูกค้าประจำ มันก็คุ้มค่า ที่จะใช้จ่ายมากขึ้นเพื่อดึงดูดแต่ละคน แต่ในทางกลับกันสิ่งนี้ก็อาจเป็นความผิดพลาดได้ หากเราใช้เงินมากเกินไปในการหาลูกค้าใหม่ที่สั่งซื้อเพียงครั้งเดียวและมีมูลค่าต่อยอดการสั่งซื้อต่ำ

เมื่อเราลองเทียบอัตรากำไรของสินค้าแต่ละชนิดในบริษัท คุณอาจพบว่าสินค้าแต่ละตัวทำกำไรแตกต่างกัน ดังนั้นการใช้กำไรของทุกสินค้าเพื่อกำหนดต้นทุนในการหาลูกค้าสูงสุดที่เป็นไปได้จึงเป็นเรื่องยาก แต่อย่างไรก็ตามคุณสามารถหาตัวเลขที่เป็นไปได้ของ CAC ได้ หากคุณจำกัดการวิเคราะห์ให้อยู่เฉพาะในตัวเลขกำไรของสินค้ายอดนิยมที่สุดในเว็บไซต์ของคุณ

และแน่นอนว่าธุรกิจใหม่ ๆ จะมีอัตรา CAC ที่สูงกว่าธุรกิจที่มีมานานเนื่องจากยังไม่มีฐานลูกค้าประจำหรือยังไม่เป็นที่รู้จักในวงกว้าง

3. อัตราการปิดการขาย Conversion Rate

อัตรา Conversion Rate คือเปอร์เซ็นต์ของผู้ใช้บริการที่ดำเนินการกระทำสิ่งใดสิ่งหนึ่งที่เราต้องการวัดผลเทียบกับผู้ใช้บริการทั้งหมด ซึ่งอาจเป็นการลงชื่อรับจดหมายข่าวสารจากทางอีเมลของคุณ คลิกดูสินค้า “คอลเลคชันใหม่” ในร้านค้าออนไลน์ของคุณ หรือทำการสั่งซื้อ โดยขึ้นอยู่กับคุณว่าจะตัดสินใจติดตามผล Conversion ตัวไหน แต่ตัววัด Conversion Rate ของ E-commerce ที่นิยมที่สุดคือจำนวนธุรกรรมต่อการเข้าชม หรืออีกนัยหนึ่งคือ เปอร์เซ็นต์ของคนที่เข้าชมเว็บไซต์ของคุณแล้วทำให้เกิดยอดขาย

Conversion Rate ของคุณนั้นจำเป็นอย่างยิ่งต่อการทำกลยุทธ์การตลาดของคุณ รวมถึงการใช้จ่ายค่าโฆษณาและการตลาดรูปแบบอื่น ๆ ที่ต้องจ่ายเงิน ถ้าอัตรา Conversion Rate ของคุณต่ำ อาจหมายความว่า Keyword ในการทำ SEO ของคุณไม่มีประสิทธิภาพ หรือคุณทำการโฆษณาขายสินค้าบนโซเชียลมีเดียโดยกำหนดกลุ่มเป้าหมาย (Target Audiences) ที่ไม่ถูกต้อง เนื่องจากคนที่เข้ามาชมเว็บไซต์ของคุณไม่ได้เข้ามาซื้อสินค้าของคุณ (สังเกตจากอัตราการปิดการขายที่ต่ำ)

ข้อมูลการปิดการขายยังให้ข้อมูลด้านการทดลองอื่น ๆ ที่คุณอาจนำไปปรับใช้กับการออกแบบเว็บไซต์ของคุณให้เหมาะสมเพื่อเกิดยอดขายสูงสุด แต่ถ้าหากจะทำการทดลองที่มีความซับซ้อนขึ้นไปอีก คุณสามารถแบ่งข้อมูลตามช่องทางการเข้าชม เพื่อให้คุณสามารถเทียบอัตรา Conversion Rate ต่อการออกแบบหน้าเว็บไซต์กับสิ่งที่ผู้เข้าชมมองหาก่อนจะคลิกเข้าไปดู

ตัววัดธุรกิจเป็นแนวทางสู่ความสำเร็จของ E-commerce

ตัววัดธุรกิจที่ถูกต้องเปรียบเสมือนสายตาของคุณผ่านผืนน้ำแห่ง E-commerce ที่ขุ่นมัวและหนาแน่น ดังนั้นจึงสำคัญอย่างยิ่งที่คุณต้องมีตัววัดที่ถูกต้อง โดยการติดตามผลมูลค่าคำสั่งซื้อโดยเฉลี่ย อัตราการปิดการขาย และต้นทุนในการหาลูกค้า เท่านี้คุณก็จะมีแหล่งข้อมูลที่สำคัญที่สามารถนำมาวิเคราะห์ข้อมูลได้และได้รับข้อมูลเชิงลึกในเรื่องประสิทธิภาพของร้านค้าออนไลน์ของคุณ ซึ่งจะทำให้ธุรกิจของคุณเติบโตและสร้างกำไรได้ดียิ่งขึ้น

บทความโดย Evan Morris
เนื้อหาจากบทความของ Data Science Central
แปลและเรียบเรียงโดย ไอสวรรค์ ไชยชะนะ
ตรวจทานและปรับปรุงโดย อนันต์วัฒน์ ทิพย์ภาวัต

Isawan Chaichana

Translator

Ananwat Tippawat

Data Scientist at Big Data Institute (Public Organization), BDI

Sign up to join Big Data Community Thailand

Make comments, write articles, and contribute to our community.